An Integrated Neural Network Model for Domain Action Determination in Goal-Oriented Dialogues

نویسندگان

  • Hyunjung Lee
  • Harksoo Kim
  • Jungyun Seo
چکیده

A speaker’s intentions can be represented by domain actions (domainindependent speech act and domain-dependent concept sequence pairs). Therefore, it is essential that domain actions be determined when implementing dialogue systems because a dialogue system should determine users’ intentions from their utterances and should create counterpart intentions to the users’ intentions. In this paper, a neural network model is proposed for classifying a user’s domain actions and planning a system’s domain actions. An integrated neural network model is proposed for simultaneously determining user and system domain actions using the same framework. The proposed model performed better than previous non-integrated models in an experiment using a goal-oriented dialogue corpus. This result shows that the proposed integration method contributes to improving domain action determination performance. Keywords—Domain Action, Speech Act, Concept Sequence, Neural Network

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

تعیین استراتژی بهینه تولید با استفاده از مدلسازی ساختاری تشریحی اصلاح ‌شده و مدل برنامه‌ریزی خطی

  To construct and understand the fundamental of relationships among elements in complicated systems on the base of expert(s) opinions, using interpretive structural modeling (ISM) methodology is beneficial. In this paper, for considering consistency rate of expert(s) and obtaining hierarchy of elements (without any loop), a modified ISM method is proposed . These experts have agreement to each...

متن کامل

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JIPS

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013